Plenary and Keynote Speakers

Plenary speaker

Professor Detlef Lohse, University of Twente

Title: Bubbles and drops with phase transitions

Bio: Professor Lohse graduated from the University of Bonn in 1989 with a degree in Physics, and completed his PhD at the University of Marburg in 1992. 

He served as a postdoctoral research fellow at the University of Chicago from 1993 to 1995, and became chair of Physics of Fluids at the University of Twente in 1998.
His present work includes turbulence and two-phase flows, granular flow, micro- and nanofluidics, and the biomedical application of bubbles.

Professor Lohse was a recipient of the 2019 Max Planck Medal, 2018 Balzan Prize, 2017 Fluid Dynamics Prize, 2012 Batchelor Prize, 2005 Spinoza Prize for his work on turbulence, thermal convection, multiphase flow, microfluidics, sonoluminescence, and was awarded a knighthood in the Order of the Netherlands Lion in 2010. He is also a member of the Royal Netherlands Academy of Arts and Sciences since 2005, a member of the National Academy of Engineering since 2017, and a Fellow of the American Physical Society.

Keynote speakers

Professor Lydia Bourouiba, MIT

Title: Unsteady fluid fragmentation 

Bio: Prof. Lydia Bourouiba is Associate Professor at the Massachusetts Institute of Technology, where she directs the Fluid Dynamics of Disease Transmission Laboratory. Her research specializes in developing and joining advanced fluid dynamics experiments at various scales and applied mathematics to elucidate the fundamentals  of fluid fragmentation, with particular interest in the resulting mixing and transport of particles, contaminants, and organisms relevant for health, where drops, multiphase, and complex flows are at the core. More on her recent work can be found at


Professor John Thome, EPFL

Title: Modelling of Flow Boiling in Microscale Pin Fin Arrays

John R. Thome is Professor of Heat and Mass Transfer at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland since 1998, where his primary interests of research are two-phase flow and heat transfer, covering both macro-scale and micro-scale heat transfer and enhanced heat transfer. He directs the Laboratory of Heat and Mass Transfer (LTCM) at the EPFL with a research staff of about 18-20 and is also Director of the Doctoral School in Energy. He received his Ph.D. at Oxford University, England in 1978. He is the author of four books: Enhanced Boiling Heat Transfer (1990), Convective Boiling and Condensation, 3rd Edition (1994), Wolverine Engineering Databook III (2004) and Nucleate Boiling on Micro-Structured Surfaces (2008). He received the ASME Heat Transfer Division's Best Paper Award in 1998 for a 3-part paper on two-phase flow and flow boiling heat transfer published in the Journal of Heat Transfer. He has received the J&E Hall Gold Medal from the U.K. Institute of Refrigeration in February, 2008 for his extensive research contributions on refrigeration heat transfer and more recently the 2010 ASME Heat Transfer Memorial Award. He has published widely on the fundamental aspects of microscale and macroscale two-phase flow and heat transfer and on enhanced boiling and condensation heat transfer.


Professor Sung Jin Kim, KAIST South Korea

Title: Application of Microchannel Flows to Cooling Devices

Dr. Sung Jin Kim is a Professor in the Department of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST). He received a Ph.D. degree in Mechanical Engineering from the Ohio State University in 1989. Until joining KAIST in July 1997, he was a group leader of Thermal Engineering Center at the IBM Tucson Laboratory for 7 years. His research group at KAIST held National Research Lab status for 5 years from 2006. Recently, he was awarded a prestigious 9-year grant by Korea’s Creative Research Initiative to develop Flexible and Thin Thermal Superconductors.

He is a member of Korean Academy of Science and Technology, and an ASME Fellow. He has received Scientific Achievement Award from KSME, Excellent Teaching Awards from KAIST, two Invention Achievement Awards and five Author Recognition Awards from IBM. He edited a book entitled Air Cooling Technology for Electronic Equipment. 


Professor Douglas H. Kelley, University of Rochester

Title: Microscale flows removing waste from the brain: Drivers, characteristics, and mysteries

Abstract:The human brain accounts for just 2% of the body's mass but metabolizes 25% of its calories, producing significant metabolic waste. However, waste buildup links to neurodegenerative diseases like Alzheimer's and Parkinson's. The brain is thought to remove waste via the recently-identified glymphatic system, a combination of spaces and channels through which cerebrospinal fluid could flow to sweep away toxins like amyloid-beta. With an interdisciplinary group of neuroscientists and physical scientists, I study the fluid physics of the glymphatic system: Where does fluid flow, and how fast? What drives flow? What characteristics of the system enable essential functions? How can we improve waste removal? Can we use glymphatic flow to deliver drugs? The team combines physics tools like particle tracking and newly-invented front tracking with biological tools like two-photon imaging through cranial windows in order to address these questions with in vivo flow measurements. I will talk about recent results showing that glymphatic flow proceeds along vessels with near-optimal shapes, pulses with the heart, is driven by artery walls, can be manipulated by changing the wall motion, and is the dominant source of swelling soon after ischemic stroke. 

Bio: Douglas H. Kelley is an Associate Professor of Mechanical Engineering and earned a PhD in physics from the University of Maryland. He held postdoctoral appointments at Yale University (in mechanical engineering) and Massachusetts Institute of Technology (in materials science and engineering). Previously he earned an MS from Auburn University and a BS from Virginia Tech. Doug is a member of the American Physical Society, ASME, and AAAS. 

Dr. Wang.png

Prof. Xiao-Dong Wang, North China Electric Power University

Title: Nanoscale droplet dynamic characteristics and enhancement of heat and mass transfer by manipulation of nanoscale droplets

Xiao-dong Wang holds Professor in Engineering Thermophysics in the Department of Energy, Power and Mechanical Engineering at North China Electric Power University, where he is also the chief of Research Center of Engineering Thermophysics. He was elected the Young and Middle-aged Leading Scientists, Engineers and Innovators in 2018 and supported by National Natural Science Foundation of China for Distinguished Young Scholars in 2015. He was supported by Program for New Century Excellent Talents in University in 2011. Prof. Wang has published 260+ papers, which were cited over 3000 times, and Web of Science H coefficient is 37. He serves as vice editor for Canadian Journal of Physics, member of editorial board of PLOS ONE and Membrane Water Treatment, and guest editor of Drying Technology. Prof. Wang has a considerable experience in fields of micro/nano scale heat transfer and multiphase flow, wetting dynamic and interfacial transport phenomenon. His current research is in the nanoscale droplet dynamic characteristics and enhancement of heat and mass transfer by manipulation of nanoscale droplets, including the dynamic characteristics of coalescence-induced nanodroplet jumping; evaporation, break-up and coalescence of nanodroplet under the electric field; explosive boiling of nano-liquid argon films; micro/nano droplet impact dynamic behavior, and so forth.